HOME      •      SEARCH      •      EMAIL    •     ABOUT

Family Sapindaceae
Rambutan
Nephelium lappaceum Linn.
RAMBOUTANIER
Shao tzu

Scientific names   Common names  
Nephelium lappaceum Linn. Usare (Sul.)
Nephelium glabrum Cambess. Usau (Bis.)
Nephelium chryseum Blum. Rambutan (Malaya)
Nephelium sufferrugineum Radlk. Ramboutanier (Engl.)
Euphobia nephelium DC Shao tzu (Chinese)
Dimocarpus crinita Lour.  

Botany
Rambutan is an evergreen, bushy tree, growing to a height of 20 meters, with a dense, low, round and spreading crown. Leaves are pinnately compound, 15 to 40 centimeters long, with 3 to 8 leaflets. The leaflets are elliptic, 7.5 to 20 centimeters long, and 3.5 to 8 centimeters wide. Flowers are greenish white, fragrant, very small, without petals, and borne on axillary panicles. Fruit is oblong, 4 to 5 centimeters long, red to yellow, covered with thick, coarse hairs or soft spines. Pulp is edible, white, opaque, translucent, juicy and sweet.


Distribution
- Cultivated in most parts of the Philippines.
- Also reported in India to Indo-China and Malaya, and extensively cultivated in Java and Malaya.

Parts utilized:
Roots, leaves and bark.

Constituents
• Seeds yield 40-48 % rambutan tallow. The insoluble fatty acids of the tallow contain about 45 percent oleic acid. The tallow contains abundant arachin, some stearin and olein.
- The seeds have traces of an alkaloid, sugar 1.25%, starch 25%, and ash 2%.
- Flesh or pulp of the fruit yields saccharose 7.8^%, dextrose 2.25%, levulose 1.25%,
- Fruit contains fat 35%, ash 2%, vitamin C 4%.
- The shoots yield saponin.
- The testa of the seed is toxic due to the presence of Nephelium saponin and tannin.

Properties
• Fruit is considered astringent, stomachic, vermifuge, febrifuge.
- Seeds reported as bitter and narcotic.

Uses
Folkloric
- The Malays use a decoction of roots for fevers; the leaves for poulticing, and the bark as astringent for diseases of the tongue.
- Fruit decoction used for diarrhea and dysentery.
- Edible pulp (aril) is used as an refrigerant in fevers.
- In China, fruit is recommended for severe dysentery, and as a warm carminative in "cold" dyspepsia.
- In Malaya, astringent bark is used as remedy for thrush. Decoction of roots taken as febrifuge. source
Others
Elsewhere, seed used to extract oil; also roasted and eaten.

Studies
Antioxidant / Antibacterial: Study yielded high amounts of phenolic compounds in the peel extracts, highest in the methanolic extract, exhibiting higher antioxidant activity than the seed extracts. All peel extracts exhibited antibacterial activity against five pathogenic bacteria.
Phytochemicals / Monoterpene Lactones: Study isolated two new diasteromeric monoterpene lactones 1 and 2. Both underwent antimicrobial testing.
Antioxidant in Rinds: The normally discarded rind was found to have extremely high antioxidant activity. The study of the extract revealed high phenolic content, low pro-oxidant capacity and strong antioxidant activity with cosmetic, nutraceutical and pharmaceutical potentials.
Antiviral / Anti-Herpes: Tested for anti HSV-1 virus activity, N lappaceum significantly affected the development of skin lesions and reduced mortality.
Cancer Chemopreventive / Waste Product: Study of NL extract showed an antiproliferative effect associated with apoptosis. The extract induced G2/M arrest of HOS indicating inhibition of cell cycle progression as one of the mechanisms. Extract was non-cytotoxic to normal cells at its inhibitory concentration. The study showed a potential for the rind, an underutilized waste product of Nephelium lappaceum.|
Antioxidant in Peels / Elliagitannins: The methanolic extract of NL peels exhibited strong antioxidant properties. Study isolated ellagic acid, corilagin, and geraniin. The ellagitannins, principal components of rambutan peels present as potential for utilization in both food and medical industry.
Fatty Acid Synthase / Potential Cancer and Obesity Therapeutics: Natural products inhibiting fatty acid synthase are potential therapeutic agents to treat cancer and obesity. Study isolated 10 compounds in NL, including flavonoids and oleane-type triterpene oligoglycosides. Compounds 8 and 9 were hederagenin derivatives. The isolates showed inhibitory activity against FAS. Results suggest the hulls of NL may be a potential source of promising FAS inhibitors .
Anthocyanins / Antioxidant: Anthocyanins, known to possess high antioxidant activity, were extracted from rambutan pericarp tissue. However, the pericarp tissue is usually discarded as waste. Results suggest a potential for extraction of health-beneficial bioactive compounds such as anthocyanins, with potential benefit to the rambutan industry.
Seed and Seed Oil / Physiochemical and Nutritional Composition: Seeds were found abundant in fats (38.(%), protein (12.4%), carbohydrate (48%). Seed oil yielded oleic acid (40.45%) and arachidic acid (36.36%) as major fatty acid. Results showed rambutan seed is a potential source of oil or carbohydrate for the human diet and for food product application.
Anti-Hyperglycemic / Geraniin: Study described rapid isolated of geraniin. In addition to high antioxidant activity and low pro-oxidant capability, geraniin showed in vitro hypoglycemic activity and aldol reductase inhibition activity, and was able to prevent the formation of advanced glycation end-products. Results support the used of a geraniin-standardized N. lappaceum extract for the management of hyperglycemia.
Seed Waste as Source of Fat: Study reported that the seed kernel of rambutan, a product generally considered waste material, can be used as a sustainable source of fats. Seed kernels yield a considerable amount of fat and high arachidic acid that makes the fat highly stable to oxidation, and a potential source of industry fats.
Ellagitannins / Antioxidant: Study isolated ellagitanins (1) ellagic acid (2) corilagin and (3) geraniin. Geraniin was the major component, exhibiting much greater antioxidant activities than BHT in both lipid peroxidation and DPPH assay. Results suggest use of the isolated ellagitannins from the peels for both medicine and food industry.
New Hederagenin Glycoside: A new oleane-type triterpene oligoglycoside, hederagenin 3-O-(3-O-acetyl-i-D-xylopyranosyl)-(13)-h- L-arabinopyranoside, together with four known compounds, was isolated from the hull of Nephelium lappaceum.

Availability
Cultivated.


Last Updated July 2012

Photos ©Godofredo Stuart / StuartXchange
OTHER IMAGE SOURCE: Fichier:THE RAMBUTAN, Nephelium lappaceum.jpg / PLATE 4. THE RAMBUTAN, Nephelium lappaceum. L. Wilkins delt. Engraved by J. Swaine. Published by W. Marsden, 1810. / Public Domain / WIKIPEDIA

Additional Sources and Suggested Readings
(1)
Antioxidant and antibacterial activities of Nephelium lappaceum L. extracts / Nont Thitilertdecha et al / Food Science and Technology .Volume 41, Issue 10, December 2008, Pages 2029-2035 / doi:10.1016/j.lwt.2008.01.017
(2)
Monoterpene lactones from the seeds of Nephelium lappaceum / Consolacion Ragasa et al / Journal of natural products / 2005, vol. 68, no9, pp. 1394-1396 / DOI: 10.1021/np0580053
(3)
Rind of the rambutan, Nephelium lappaceum, a potential source of natural antioxidants / Uma Palanisamy et al / Food Chemistry • Volume 109, Issue 1, 1 July 2008, Pages 54-63 / doi:10.1016/j.foodchem.2007.12.018
(4)
Inhibitory effects of indonesian medicinal plants on the infection of herpes simplex virus type 1
PTR. Phytotherapy research ISSN 0951-418X / 1999, vol. 13, no1, pp. 37-41
(5)
Promising Effect of Nephelium lappaceum Rind Extract as Cancer Chemopreventive Agent Through Apoptosis and Cell Cycle Arrest Mechanisms on Human Osteosarcoma Cells / W S Wan Nur Hidayati, A W Roidhwan, S Azman / UMTAS 2011
(6)
Identification of Major Phenolic Compounds from Nephelium lappaceum L. and Their Antioxidant Activities / Nont Thitilertdecha, Aphiwat Teerawutguirag et al / Molecules 2010, 15, 1453-14645 / DOI: 10.3390/molecules15031453

(7)
Fatty acid synthase inhibitors from the hulls of Nephelium lappaceum L. / Zhao Y X, Liang W J, Fan H J et al / Carbohydr Res. 2011 Aug 16;346(11):1302-6. Epub 2011 Apr 28.
(8)
ANTHOCYANINS EXTRACTED FROM RAMBUTAN (NEPHELIUM LAPPACEUM L.) PERICARP TISSUES AS POTENTIAL NATURAL ANTIOXIDANTS
/ Jian Sun, Hongxiang Peng, Weiqiang Su et al / Journal of Food Biochemistry, Vol 35, No 5, Pp 1461–1467, October 2011 / DOI: 10.1111/j.1745-4514.2010.00467.x
(9)
Physicochemical and Nutritional Composition of Rambutan Anak Sekolah (Nephelium lappaceum L.) Seed and Seed Oil / Serida Nauli Harahap, Nazaruddin Ramli, Nazanin Vafaei and Mamot Said / Pakistan Journal of Nutrition 10 (x): xx-xx, 2011
(10)
Rapid isolation of geraniin from Nepheliumlappaceum rind waste and its anti-hyperglycemic activity
/ Uma D Palanisamy, Lai Teng Ling et al / Food Chemistry, Volume 127, Issue 1, 1 July 2011, Pages 21–27
(11)
Identification of Major Phenolic Compounds from Nephelium lappaceum L. and Their Antioxidant Activities /
Nont Thitilertdecha, Aphiwat Teerawutgulrag, Jeremy D. Kilburn and Nuansri Rakariyatham / Molecules 2010, 15, 1453-1465; doi:10.3390/molecules15031453
(12)
Seed waste may be source of new fats: Study / Food Navigator
(13)
Response surface optimization and characteristics of rambutan (Nephelium lappaceum L.) kernel fat by hexane extraction / Wanrada Sirisompong, Wannee Jirapakkul, Utai Klinkesorn / LWT - Food Science and Technology, Volume 44, Issue 9, November 2011, Pages 1946–1951
(14)
A NEW HEDERAGENIN GLYCOSIDE FROM Nephelium lappaceum / Wen-Juan Liang, Qing-Yun Ma, He-Zhong Jiang, Jun Zhou, Jie Pang, and You-Xing Zhao / Chemistry of Natural Compounds, Vol. 47, No. 6, January, 2012


HOME      •      SEARCH      •      EMAIL    •     ABOUT